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Abstract

The objective of this paper is an analytical and numerical study of the transient vibrations of a taut inclined cable

with a riding accelerating mass that is suspended in space. The moving mass is accelerated by a thrust down the
inclined cable and is able to be aerodynamically brought to a halt. The thrust is a follow force that is tangential to
the deformed con®guration of the cable.
The cable is suspended from two points of di�erent elevation. The higher point of the cable is anchored to the

ground, and the lower point of the cable is controlled so that its tension at that point is held at a constant level.
Hence, the length of the cable is not ®xed and is a parameter to be determined during any run. The restriction in
which an inextensible cannot vibrate in the limit of vanishing sag then is removed.

The mechanics of the problem is Newtonian. Methods of analysis will consist of the dynamics of small
deformations superimposed on the static catenary state. The problem is nonlinear due to the presence of friction
and the convective acceleration interaction of the moving mass and the cable. Galerkin's procedure for removal of

spatial dependence and numerical integration are used to obtain convergent solutions. # 1999 Elsevier Science Ltd.
All rights reserved.

1. Introduction

Vibrations of cables with and without moving mass have been the subject of many studies. Smith

(1964) outlined analytical works to investigate the dynamic behavior of a stretched string carrying a

moving mass that travels with constant velocity along the string. Analytical solutions for the vibrations

of a stretched string due to moving load are carried out but the interaction of string and mass is not

considered in his analysis.

Forrestal et al. (1975) considered a rocket-propelled trolley which is forced at constant acceleration

along a steel cable suspended between two mountain peaks. They developed a simple model that

neglects the interaction of cable and attached mass to predict de¯ection pro®le of the cable and kink

angle in the cable during motion.
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In a latter study, Rodeman et al. (1976) analyzed the dynamic response of an in®nitely long ideal
cable due to the motion of the attached mass. Their results show that the dynamics of the system can be
signi®cantly a�ected by the inertia of the moving mass.

Triantafyllou (1984) studied the mechanics of a taut inclined cable due to external forces. He points
out that the e�ect of elasticity is particularly important in taut cables. His results indicate that an
inextensible cable in the limit of vanishing sag is not possible.

Wu and Chen (1989) analyzed the dynamic response of an extensible cable suspended from two points
of equal elevation due to the motion of the attached mass. They use Newmark direct integration method
and the Newton±Raphson iteration approach to predict the in¯uence of various parameters on the
response of the system.

Ting et al. (1974) consider the e�ect of convective acceleration. The interaction between the moving
mass and the supporting structure was involved. They point out that the convective acceleration terms
that were not previously recognized should be included if `correct' formulation is desired.

Wang (1993) analyzed the transient vibrations of an inextensible cable with a riding accelerating mass.
A new model that includes the e�ect of rolling friction between the moving mass and the cable was
developed. An important feature to be carried out is the ability to bring the mass to a halt at the end
point of the cable.

In this study, the purpose is to present an analytical methodology to evaluate the transient dynamics
of the motion of a cable-mass system with ®nite span and the in¯uence of various parameters upon the
performance of the cable.

The moving mass may be parked on the cable and may slide down the cable under a variety of
conditions that include free fall under gravity and being propelled with forward/reverse forces. Rapid
deceleration and braking to a halt at the desired (end) point on the cable is considered. The e�ect of
rolling friction between the rollers of the mass and the cable is a parameter that is included in modeling
of the system.

The force applied on the mass is speci®ed and this results in variable velocity and acceleration,
unknown location of the mass along the cable, nonlinear boundary and initial value problem. The
problem of speci®cation of forward and retarding forces that will cause the moving mass to acquire a
speci®ed speed and thereafter reduce speed to a halt at the desired (end) point is solved.

2. Basic formulae

In this study, an inclined taut inextensible cable suspended from two points L apart and having a
di�erence in elevation of h is considered. The Cartesian position vector of point s along the cable at
time t is represented by r(s,t ) or is given as (Fig. 1)

r�s,t� � x�s,t�i� y�s,t�j �1�
The equations of motion then can be written as

�Tr 0 � 0�f � mÈr, 0 < s < `, t > 0 �2�
with the inextensibility constraint

r 0�r 0 � 1 �3�
where superposed prime and dot denote s and t di�erentiation and where T and m indicate the tension
and the mass per unit length of the cable respectively. The external forces, are collectively denoted by f,
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include the weight of the cable and the mass as well as the moving reaction of the mass upon the cable.
The equation of motion of the mass, considered separately, states (Fig. 1)

Mam �Mg� fm ÿ mNtÿNn �4�
where M = mass of the moving mass; g � gj=acceleration of gravity; fm=thrust=Mft; N= reaction
of cable on the mass; m=coe�cient of friction; t � @x=@si�@y=@sj�cos yi�sinyj; n�ÿ@y=@si�@x=@sj�
ÿsin yi�cos yj and y stands for the angle between t and the x axis.

The acceleration of the mass, aM, is obtained from

aM � d2

dt2

�
r��s�t�, t�� � r 00

ÿ
_�s
�2�2_r 0_�s� r 0��s� Èr �5�

where �s�t� is the distance along the arc of the cable designating the position of the moving mass. The
force f on the cable can be stated also by

f � mg� �Nn� mNt�d�sÿ �s� �6�
where d�sÿ �s� is the Dirac delta function.

Thus the equation governing the motion of the combined system (mass and cable) becomes

�Tr 0 � 0�mg� �Mg� fm�d�sÿ �s� � mÈr�Md�sÿ �s�
h
r 00
ÿ
_�s
�2 �2_r 0_�s� r 0��s� Èr

i
�7�

while the mass obeys

M

h
r 00
ÿ
_�s
�2�2_r 0_�s� r 0��s� Èr

i
� fm �Mgÿ �Nn� mNt�, s � �s�t� �8�

Equations (3), (7) and (8) account for r, T, N and �s when m, M, m, g and the points of anchor of cable

Fig. 1. Schematic of cable and the moving mass.
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are speci®ed. The boundary conditions of the problem when control is being implemented (Fig. 1) are

r � 0, at s � 0 �9�

r � Li� hj, at s � `�t� �10�

T � T � � u��t�, at s � `�t� �11�
where u��t� is the control force speci®ed by a control algorithm and `�t� is the total cable length to be
determined.

To determine the static shape of the cable when the mass is on the cable, we de®ne the static problem
as

d

ds

�
T0

dr0

ds

�
� ÿ�m�Md�sÿ �s��g �12�

dr0

ds
� dr0

ds
� 1 �13�

with the boundary conditions

r0 � 0, at s � 0 �14�

r0 � Li� hj, at s � `0 �15�

T0�`0� � T � �16�
In scalar terms eqn (12) implies

d

ds

�
T0

dx0

ds

�
� 0 �17�

d

ds

�
T0

dy0
ds

�
� ÿmgÿMgd�sÿ �s� �18�

The solution of eqn (18) satisfying eqn (13) is

dy0
dx0
� ÿsinh b�x0 ÿ c1 �, 0 < x0 < �x0 �19a�

dy0
dx0
� ÿsinh

�
b�x0 ÿ ĉ1� � Mg

T0��s�
�
, �x0 < x0 < L �19b�

where b � mg=H0 and H0 � T0 dx0=ds � the horizontal component of the tension in the cable. Here, the
term Mg=T0�s� in eqn (19b) can be obtained approximately by the integration of eqn (12) from �sÿ e to
�s� e with e denoting the small deviation of the position from the mass. A single integration of the static
form of eqn (12) yields
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T0t0 j�s�e�sÿe� ÿMg �20�
In scalar terms eqn (20) implies

T0
dx0

ds

����
�sÿe
� T0

dx0

ds

����
�s�e
� H0 �21a�

dy0
dx0

����
�s�e
ÿ dy0

dx0

����
�sÿe
� ÿMg

H0
�21b�

Substitution of eqns (19a) and (19b) into eqn (21b) yields

Mg

T0��s� � ÿb
� �x0 ÿ ĉ1� � sinhÿ1

�
sinh b� �x0 ÿ c1� � Mg

H0

�
�22�

The static de¯ection of the cable y0 due to the weight of the cable and the mass then can be determined
from eqns (19a) and (19b) which yields

y0 � 1

b
�ÿ cosh b�x0 ÿ c1� � c2

�
, 0 < x0 < �x0 �23a�

y0 � 1

b

�
ÿ cosh

�
b�x0 ÿ �x0� � sinhÿ1

�
sinh b� �x0 ÿ c1� � Mg

H0

��
� ĉ2

�
, �x0 < x0 < L �23b�

where c1, c2 and ĉ2 are the integration constants and can be determined from the conditions y0 � 0 at
x0 � 0, y0 � h at x0 � L and y0j�sÿe � y0j�s�e at x0 � �x0.

Hence, the tension T0 in the cable is

T0 � H0
ds

dx0
� H0 cosh b�x0 ÿ c1�, 0 < x0 < �x0 �24a�

T0 � H0
ds

dx0
� H0

�
cosh

�
b�x0 ÿ �x0� � sinhÿ1

�
sinh b� �x0 ÿ c1� � Mg

H0

���
, �x0 < x0 < L �24b�

The cable length at a horizontal distance x0 from the ®xed end is s�x0� and can be computed from

s�x0� �
� �x0

0

"
1�

�
dy0
dx0

�2
#1=2

dx�
�x 0

�x0

"
1�

�
dy0
dx0

�2
#1=2

dx �25�

Therefore, the total length of the cable is from `0 � s�L� and T � � T0�`�. Similarly, the curvature w0 and
the directional components dx0=ds and dy0=ds can also be shown and are given in Appendix A.

The static king angle in the cable at the mass �� f0� then can be derived from eqn (21b) and is given
by

f0 � 2 tanÿ1
Mg

2H0
�26�

With the view to determining the derivations from the static state one sets

r�s,t� � r0�s� � u�s,t� � r0�s� � u�s,t�t0 � w�s,t�n0 �27�
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T�s,t� � T0�s� � DT�s,t� �28�
where u and DT represent the displacement and change in tension from the static state and t0 and n0 are
unit tangent and normal vectors to that state. The equation of motion, eqn (7), yields

�
t0�DT� � T0u

0 � DTu 0
� 0�fmd�sÿ �s� � m

@2u

@ t2
�MaMd�sÿ �s� �29�

The inextensibility constraint (3) becomes

2r 00 � u 0 � u 0� u 0 � 0 �30�
The boundary conditions for u become u=0 at s � 0. For boundary conditions (10) and (11) we set ` �
`0 � D` with D`� `0. Employing Taylor's expansion to eqn (10) we have

r0�`0 � � t0D`� u�`0� � u 0�`0�D` � Li� hj �31a�
which reduces to

t0D`� u�`0 � � u 0�`0�D` � 0 �31b�
Similarly, eqn (11) reduces to�

T 00�`0� � DT 0�`0�
�
D`� DT�`0� � u��t� �32�

Eliminating D` between eqns (31b) and (31b) yieldsÿ
T 00 � DT 0

�
u� �u� ÿ DT�ÿt0 � u 0

� � 0, at s � `0 �33�
In the following, we assume that u and DT are small so that only linear terms in u and DT are

signi®cant. Therefore, to summarize the dynamic problem, eqns (29), (30) and (8), we have

��DT�t0 � T0u
0� 0�fmd�sÿ �s� � m

@2u

@t2
�Md�sÿ �s�

hÿ
w0t0 � u 00

�ÿ
_�s
�2�2 _u 0_�s� ÿt0 � u 0

�
��s� �u

i
,

0 < s < `0

�34�

with the inextensibility condition

t0 � u 0 � u 0 ÿ w0w � 0, 0 < s < `0 �35�
and

M

hÿ
w0t0 � u 00

�ÿ
_�s
�2�2 _u 0_�s� ÿt0 � u 0

�
��s� �u

i
� fm �MgÿNnÿ mNt, s � �s�t� �36�

Eqns (34)±(36) provide ®ve equations for the ®ve unknowns u, w, N, DT, and �s�t�. The boundary
conditions, in scalar terms, are

u�s, t� � w�s, t� � 0, at s � 0 �37�

T 00u� u� ÿ DT � 0 and w � 0, at s � `0 �38�
Resolving eqn (34) in directions t0 and n0 yields
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ÿT0w0
ÿ
w0u� w 0

�� �DT� 0�fm � t0d�sÿ �s� � m �u

�Md�sÿ �s�
h
ÿ w0

ÿ
w0u� w 0

�ÿ
_�s
�2���s� �u

i
, 0 < s < `0, t > 0

�39�

�
T0

ÿ
w0u� w 0

�� 0�w0�DT� � fm � n0d�sÿ �s�

� m �w�Md�sÿ �s�
�h

w0 �
ÿ
w0u� w 0

� 0iÿ_�s�2�2ÿw0u� w 0
��_�s� ÿw0u� w 0

�
��s� �w

�
,

0 < s < `0, t > 0

�40�

Similarly, considering the equation of motion of the mass, eqn (36), one has

M

h
ÿ w0

ÿ
w0u� w 0

�ÿ
_�s
�2���s� �u

i
�
�
Mg

dy0
ds
� fm � t0

�
�N

ÿ
w0u� w 0 ÿ m

�
, s � �s�t�, t > 0 �41�

M

�h
w0 �

ÿ
w0u� w 0

� 0iÿ_�s�2�2ÿw0u� w 0
��_�s� ÿw0u� w 0

�
��s� �w

�
�
�
Mg

dx0

ds
� fm � n0

�
ÿN,

s � �s�t�, t > 0

�42�

If we eliminate N between these equations by substituting for it from eqn (41) into eqn (42) and
neglect nonlinear terms in u and w when comparing these terms to the linear terms in u and w and then
comparing the latter to the unity, after some manipulations, we obtain

��sÿ m
h
w0 �

ÿ
w0u� w 0

� 0iÿ_�s�2ÿ2mÿw0u� w 0
� � _�s

� g

�
dy0
ds
� ÿw0u� w 0 ÿ m

�dx0

ds

�
� 1

M
fm�
�
t0 �

ÿ
w0u� w 0 ÿ m

�
n0

�ÿ �u� m �w,

s � �s�t�, t > 0

�43�

Thus, eqns (35), (39), (40) and (43) serve to determine u�s,t�, w�s,t�, DT�s,t�, and �s�t� subject to the
boundary conditions (37) and (38). The given data of the problem consist of the information related to
the static state of the cable and the forces fm that acts on the mass. It is mentioned here that as evident
from eqn (43) the problem is nonlinear due to convective accelerations and friction.

The force fm acting on the mass is obtained by assuming that whenever a mass is being propelled by a
force along an inclined cable, the force will be along the tangent to the vibrating cable. Hence, the force
fm has the form

fm �Mft �Mf
�
t0 �

ÿ
w0u� w 0

�
n0

� �44�

where f is a prescribed function of time. For example, f may be a positive constant for a certain interval
for the mass to increase speed and a negative constant to reduce speed and to come to a halt at the end
of the cable.

Similar to what was done in the static state, the dynamic kink angle in the cable at the point where
the mass is located can be obtained approximately by the integration of eqn (7) from �sÿ e to �s� e. A
single integration of eqn (7) yields
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T�s,t�t���s�e
�sÿe� ÿ�Mg�MaM � fm �s��s �45�

where aM is de®ned by eqn (5). Here, we substitute T � T0 � DT and t � t0 � u 0 into eqn (45) and
assume that the variation of tension DT is continuous at s � �s�t� when the mass is mounted on wheels
rolling on the cable. The kink angle in dynamic state (0f ) then is given by

f � f0 � Df �46�
where f0 � 2 tanÿ1Mg=2H0 and Df � 2sinÿ1jb � bj1=2=2 with b�1=DT��fmÿMaM�s��s ÿ T0u 0j�s�e�sÿe�.

3. Method of solution

We begin by representing u and w as continuous functions. Thus kinks and abrupt changes in cable
con®guration can only be determined approximately. Let

w�s,t� �
X1
n�1

vn�t�sin
nps
`0

�47a�

u�s,t� �
X1
n�1

vn�t�Rn�s� �47b�

where

Rn�s� �
�s
0

w0sin
nps
`0

ds

Thus the boundary conditions (37) and (38) and the constraint relation (35) are satis®ed. Next, eqns
(47a) and (47b) are substituted into the tangential equation of motion, eqn (39) to determine �DT � 0, i.e.

�DT� 0�
X1
n�1

ÿ
T0w0Bnvn�t� �mRn �vn�t�

��Md�sÿ �s�
"

��sÿ
ÿ
_�s
�2
w0
X1
n�1

Bnvn�t� �
X1
n�1

Rn �vn�t�
#

ÿ fm�t0d�sÿ �s�, 0 < s < `0, t > 0

�48�

where Bn�w0Rn��np=`0� cos �nps=`0�. Integration of eqn (48) yields

DT �
X1
n�1

�� �s
0

T0w0Bn ds

�
vn�t� �m

��s
0

Rn ds

�
�vn�t�

�
� b1�t�, 0 < s < �s, t > 0 �49a�

DT �
X1
n�1

�� �s
0

T0w0Bn ds

�
vn�t� �m

��s
0

Rn ds

�
�vn�t�

�

�M

"
��sÿ

ÿ
_�s
�2
w0��s�

X1
n�1

Bn��s�vn�t� �
X1
n�1

Rn��s� �vn�t� ÿ f

#
� b2�t�, s < s < `0, t > 0

�49b�

where b1�t� and b2�t� are constants of integration. As mentioned previously, the variation of tension, DT,
is assumed to be continuous at s � �s�t�. Thus, eqns (49a) and (49b) with eqn (38) imply
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DT � T 00�`0�
X1
n�1

Rn�`0�vn�t� ÿ
X1
n�1

( �`0
s

T0w0Bn ds

!
vn�t� �m

 �`0
s

Rn ds

!
�vn�t�

)

� u�, 0 < s < `0, t > 0

�50�

This result together with eqns (47a) and (47b) can now be inserted into the normal equation of motion,
eqn (40), which yields

X1
n�1

"
m

 
sin

nps
`0
� w0

�`0
s

Rn ds

!
�M sin

nps
`0

d�sÿ �s�
#

�vn

� 2
ÿ
_�s
�
Md�sÿ �s�

X1
n�1

Bn _vn �
X1
n�1

(
w0

�`0
s

T0w0Bn dsÿ w0T
0
0�`0�Rn�`0 � ÿ �T0Bn� 0

�Md�sÿ �s�
h
Bn

��s� B 0n
ÿ
_�s
�2ÿBnf

i)
vn �Md�sÿ �s�

ÿ
_�s
�2
w0 ÿ w0u

� � 0, 0 < s < `0, t > 0

�51�

The approximate solution of the cable-mass system is to be obtained by employing the Galerkin's
method. Using Galerkin's procedure for minimzing error, we multiply eqn (51) by sin jps=`0 and
integrate eqn (51) with respect to s from zero to `0, thus obtaining

1

2
m`0 �vj�t� �

X1
n�1

anj��s� �vn�t� � 2M_�s
X1
n�1

bnj��s� _vn�t� �
X1
n�1

�
gnj �M

h
��sBn��s� �

ÿ
_�s
�2
B 0n��s�

ÿ fBn��s�
i

sin
jp �s

`0

�
vn�t� �M

ÿ
_�s
�2
w0��s� sin

jp�s

`0
� sju�, j � 1, 2, 3, . . . t > 0

�52�

where anj, bnj, gnj and sj are given in Appendix B. Also, the equation of motion of mass, eqn (43),
becomes

��sÿ m

"
w0��s� �

X1
n�1

B 0n��s�vn
#ÿ

_�s
�2ÿ2m X1

n�1
Bn��s� _vn

!
_�s

� g

"
dy0
ds

����
s��s

�
 X1

n�1
Bn��s�vn ÿ m

!
dx0

ds

����
s��s

#
� fÿ

X1
n�1

Rn��s� �vn � m
X1
n�1

sin
np�s

`0
�vn, t > 0 �53�

The equations of motion of the cable-mass system in dimensionless form can be obtained by
introducing the following dimensionless quantities:

t �
0@ ���������

H0

m`20

s 1At, B � s

`0
, x � �s

`0
, M̂ � M

m`0
, v̂ � v

`0
,

f̂ � m`0
H0

f, ĝ � m`0
H0

g, ŵ0 � w0`0, û� � u�

H0

�54�

Then the equations of motion, eqns (52) and (53), become, respectively,
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1

2
�̂vj�t� �

X1
n�1

ânj�x� �̂vn�t� � 2M̂_x
X1
n�1

b̂nj�x� _̂vn�t� �
X1
n�1

n
ĝnj � M̂

h
�xB̂n�x� �

ÿ
_x
�2
B̂
0
n�x� ÿ f̂B̂n�x�

i

sin jpx
o
v̂n�t� � M̂

ÿ
_x
�2
ŵ0�x� sin jpx � ŝjû

�, j � 1, 2, 3, . . . , _�� � d

dt
, �� 0 � d

dx
, t > 0 �55�

�xÿ m

"
ŵ0�x� �

X1
n�1

B̂
0
n�x�v̂n

#ÿ
_x
�2ÿ2m X1

n�1
B̂n�x� _̂vn

!
_x

� ĝ

"
dy0
dB

����
B�x
�
 X1

n�1
B̂n�x�v̂n ÿ m

!
dx0

dB

����
B�x

#
� f̂ÿ

X1
n�1

R̂n�x� �̂vn � m
X1
n�1
� sin�npx�� �̂vn, t > 0 �56�

where ânj, b̂nj, ĝnj, ŝj, B̂n�x� and R̂n�B� are de®ned by Appendix B.
To write the equations of motion in matrix form, we allow j and n in eqns (55) and (56) to have the range

j � 1, 2, 3, . . . , N

n � 1, 2, 3, . . . , N

and let

y � �v̂1, v̂2, v̂3, v̂4, . . . , v̂N�T �57�
Then eqns (55) and (56) can be written as

M�x�Èy� _xN�x�Çy�K1�x�y� �xK2�x�y� _x
2�

K3�x�y� k1�x�
� � h�û�� �58�

and

�x� p�y�_x2 � q�_y�_x� cT�x��y� dT�x�y� g�x� � 0 �59�

respectively. The initial conditions are

_y�0� � y�0� � 0, _x�0� � 0 and x�0� � x0 �60�
where x0 � 0 implies the mass is not parked on the cable before the mass is set on motion. The components
of the previously de®ned matrices, vectors and scalars in eqns (58) and (59), i.e., M, N, K1, K2, K3, k1, h, c,
d, p, q and g, are given in Appendix C.

The problem of numerical simulation of the transient vibrations of the cable system carried out by
numerically integrating the governing di�erential eqns (58) and (59) with the associated initial conditions
is speci®ed in eqn (60). To do this, we further reduce the system by introducing

z �
ÿ
ÇyT, _x, yT, x

�T �61�
where z is the 2N� 2 vector with the initial condition z�0� � �0, 0, 0, x0�T. Then eqns (58) and (59) can
be reduced to

ÅMÇz � ÅNz� f� � 0 �62�
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In eqn (62), ÅM and ÅN are the �2N� 2� � �2N� 2� matrices and f� is the 2N + 2 vector de®ned by

�M �

26664
M K2y _xN 0
cT 1 0T _xp
�0� 0 I 0
0T 0 0T 1

37775

�N �

26664
�0� 0 K1 � _x

2
K3 0

0T q dT 0
ÿI 0 �0� 0
0 ÿ1 0T 0

37775

f� �
h

_x
2
k1�x� ÿ hT�u��, g, 0T, 0

iT
where I, [0] and 0 are N�N unit, N�N zero and N� 1 zero matrices respectively.

Fig. 2. A comparison between the result of this paper and the result of Forrestal et al. (1975).

Y.-M. Wang / International Journal of Solids and Structures 37 (2000) 1361±1383 1371



Fig. 3. Rate of convergence of solutions, with mass under free fall, with N for H0=444.8 KN, m � 0:0 and Mg= 40 KN.

Fig. 4. Static sag of cable under its own weight vs horizontal distance for H0=100 KN, 250 KN and 500 KN.
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4. Numerical results and discussion

Numerical results presented here are based on the assumptions that the cable spans two mountain
peaks 4500 m apart with a di�erence in elevation of 750 m. The material of the cable is Kevlar about 5
cm in diameter with a weight of 21.45 N mÿ1. The weight of the mass may range up to the total weight
of the cable. The mass may slide down the cable under a variety of conditions that include free fall
under gravity or being propelled with thrusts. Rapid deceleration and braking to a halt at the desired
(end) point are planned. The control force u�(t ) is set to be zero for the work reported here.

For numerical integration of the system, eqn (62), the Runge±Kutta method with sixth order accuracy
is used. Evaluation of the integrals with variable limits, such as those occurring in eqn (55), was carried
out using power series technique up to O(x 7). As shown in Fig. 2, the accuracy of the model was tested
by comparison of its results with the results of the simpler model of Forrestal et al., (1975) which

Fig. 5. Static sag of cable vs horizontal distance for Mg= 50 KN, H0=250 and 500 KN when the mass is parked at �x0 � 1125,

2250 and 3375 m.
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pertains a moving mass with constant acceleration. It is known that the latter is in agreement with
experimental observations. The dimension N of z in eqn (62) that was necessary to retain for su�cient
accuracy was found to be 35. Fig. 3 shows the rate of convergence of cable de¯ection at trolley from
static state, with mass under free fall, with N. There is negligible di�erence between the results for
N= 20 and N = 35. Hence, all calculations are based on N = 35. The remaining parameters in Fig. 3
are Mg = 40 KN, m � 0:0 and H0=444.8 KN.

In the following, an attempt is made to evaluate the in¯uence of various parameters upon the
performance of the system. The results reported below pertain to the general case when appreciable
static sag, friction and variable acceleration exists.

Fig. 4 shows the static shape of the cable under its own weight for the three cases when H0=100 KN,
H0=250 KN and H0=500 KN. As shown in Fig. 4, the static sag in the ®rst case, H0=100 KN, was
referred as excessive and hence the remainder of the study is carried out for the two other cases.

The results of static form of a cable with a riding mass are presented in Figs. 5±7. Fig. 5 shows the

Fig. 6. Static de¯ection of cable with horizontal distance at x-0=2250 m for H0=250 KN and three values 10, 25 and 50 KN for Mg.
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static de¯ection pro®le of the cable when the mass, Mg = 50 KN, is parked at �x0 � 1125, 2250 and 3375
m. Two di�erent values of H0 are selected. Fig. 5(a) is related to the case when H0=500 KN and the
other, Fig. 5(b), is for the condition when H0=250 KN. It clearly indicates that behind the mass the
cable is taut and ahead of it the cable is slack. It also shows that high static tension reduces the kink
angle in the cable.

Fig. 6 illustrates the static sag of the cable when the mass is parked at the midpoint of the cable
(x-0=2250 m) for Mg = 10, 25 and 50 KN. The tension H0 used in Fig. 6(a) and 6(b) are, respectively,
500 and 250 KN. The dashed lines represent the static form of the cable under its own weight. The
result shows that the static sag of the cable increases with the weight of the riding mass and decreases
with H0.

The di�erence of cable length with and without a riding mass under constant static tension is shown
in Fig. 7. The parameters used in this ®gure are Mg = 25 KN and two values of static tension H0=250
and 500 KN. This illustrates that higher tension in the cable results in lower value of the variation of
cable length.

The dynamic behaviors of the system due to the motion of a riding accelerating mass are given in
Figs. 8±12. As mentioned previously, the propelling force on the mass is speci®ed and this results
variable velocity, acceleration and unknown location of the mass along the cable. Therefore, the
trajectory and speed of the mass on the cable are quantities of interest. Fig. 8(b) and (a), respectively,
show the trajectory and velocity of the mass traveling along the cable under free fall, f= 0.0. The
parameters used are Mg = 25 KN, m=0.0 and three values 250, 500 and 750 KN for H0. The result
indicates that if the tension of the cable is not high enough, the speed of mass will initially increase and
thereafter decrease as the mass moves to the lower point. This is expected since under low tension there
exists a point of maximum sag within the two supports.

The e�ect of retarding force to the mass is studied in Fig. 9. In this ®gure, the traveling speed is
plotted with the location of mass along the cable for Mg= 25 KN and two values 250 KN, Fig. 9(b),
and 500 KN for H0 under free fall. Three values of reverse force, f = 0.0, ÿ2.5 and ÿ5 m sÿ2 are

Fig. 7. The di�erence of cable length vs static horizontal position of mass on the cable for Mg= 25 KN and two values 250 and

500 KN for H0.
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selected and is applied at �s=`0 � 0:6 respectively. The result indicates that the speed of mass increases
with the propelling thrust and thereafter reduces speed to a halt with the applied retarding force.

Another important operational requirement is the ability to bring the mass to a halt at the end point
by a constant reverse force applied after the mass has achieved speci®ed speed under forward thrust.
The program here developed is capable of predicting the magnitude of the reverse force for any position
and speed of the mass. The problem is solved by ®rst determining the terminal velocity of the mass
when forward thrust is set to zero at a particular point and then coasts to the end point. The end
velocity is thus made zero by adding reverse force at that particular point and using iteration.

Fig. 10 indicates the trajectory of the mass, Fig. 10(b), and correspondingly the velocity of the mass
along the trajectory under free fall. This is of the value when the location of the moving mass is of
primary concern. The parameters used in this ®gure are H0=500 KN, m � 0:0 and two values 25 and 50

Fig. 8. The trajectory and velocity of mass vs position of mass along the cable for Mg= 25 KN, m � 0 and three values 250, 500

and 750 KN for H0.
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KN for Mg. The retarding force is assumed to be applied at �s=`0 � 0:6. Fig. 11 shows information to
that shown in Fig. 10, except in this ®gure two values of the forward thrust, f= 0.0 and 5.0 m sÿ2, are
selected. The other parameters used are H0=500 KN, m=0.0 and Mg = 25 KN. Based on the results it
appears that the speed of moving mass and the reverse force required in order to stop the mass at the
end point decrease with the weight of the mass (Fig. 10). This is expected since increase in the weight of
the mass will sharpen the kink angle in the cable. Meanwhile, larger values of forward thrust is applied,
faster traveling speed is obtained and accordingly bigger values of reverse force for zero terminal speed
are required (Fig. 11).

Fig. 9. The traveling speed with the position for mass along cable for Mg= 25 KN, m � 0:0 and two values 250 (lower plot) and

500 KN (upper plot) for H0 under free fall. Three values of retard force f= 0.0, ÿ2.5 and ÿ5 m sÿ2 are, respectively, applied at

�s=`0 � 0:6.
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Fig. 12 illustrates the value of the retarding force vs the forward thrust for zero terminal speed when
assuming that the former is applied at �s=`0 � 0:6 for Mg = 100 KN, H0=500 KN and two values of m,
m=0.0 and m=0.1. The result shows that the reverse force increases almost linearly with the forward
thrust. Moreover, if the friction between the mass and the cable is not zero then the reverse force that is
required to stop the mass at the end point decreases as the friction is increased.

5. Conclusions

In this study, the mechanics and transient dynamics of an inclined inextensible cable suspended from

Fig. 10. Trajectory (lower plot) and velocity of the mass along the trajectory under free fall for H0=500 KN, m � 0 and two values

25 and 50 KN for Mg. The retard force is applied at �s=`0 � 0:6.
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two points of di�erent elevation with a riding accelerating mass are studied. The restriction that an
inextensible cable cannot vibrate in the limit of vanishing sag, Triantafyllou (1984), was removed by
letting the length of the cable vary with the position of the mass on the cable. To accomplish this, the
higher point of the cable is anchored to the ground, and the lower point of the cable is controlled so
that its tension at that point is held at a constant level. Hence, the length of the cable is not ®xed and is
a function of the position of the moving mass during operation. This arrangement thus removes the
restriction on inextensible cable under very high tension.

The mechanics of the interface between the mass and the cable are determined by modeling the mass
as a rigid body that travels on a ¯exible structure. The interaction force, caused by convective
acceleration and friction of the mass traveling on the cable is hence a function of the cable

Fig. 11. Trajectory (lower plot) and velocity of the mass along the trajectory for H0=500KN, m � 0, Mg= 25 KN and two values

0.0 and 5 m sÿ2 for forward thrust. The retard force is applied at �s=`0 � 0:6.

Y.-M. Wang / International Journal of Solids and Structures 37 (2000) 1361±1383 1379



displacements. Therefore, there exists a nonlinear coupling between the de¯ection of the cable and the
function that presents the position of the moving mass on the cable. Further, due to the presence of
friction and convective acceleration, the problem is nonlinear. Even the di�erential equations of motion
are obtained by superimposing small displacements on the catenary state of the cable.
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Fig. 12. Reverse force vs forward thrust for zero terminal speed when H0=500 KN, Mg= 100 KN and m � 0:0 and 0.1. The
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Appendix A

w0 �
ÿb

cosh2 b�x0 ÿ c1�
, 0 < x0 < �x0

w0 �
ÿb

cosh2

�
b�x0ÿ �x0� � sinhÿ1

�
sinh b�x0 ÿ c1 � � Mg

H0

�� , �x0 < x0 < L

dx0

ds
� 1

cosh2b�x0 ÿ c1�
, 0 < x0 < �x0

dx0

ds
� 1

cosh2

�
b�x0 ÿ �x0� � sinhÿ1

�
sinh b�x0 ÿ c1� � Mg

H0

�� , �x0 < x0 < L

dy0
ds
� ÿtanh b�x0 ÿ c1�, 0 < x0 < �x0

dy0
ds
� ÿtanh

�
b�x0 ÿ �x0 � � sinhÿ1

�
sinh b�x0 ÿ c1� � Mg

H0

��
, �x0 < x0 < L

Appendix B

anj �M sin
np�s

`0
sin

jp �s

`0
�m

�`0
0

w0�s�
 �`0

s

Rn�s�ds
!

sin
jps
`0

ds

bnj � Bn��s� sin
jp �s

`0

gnj �
�`0
0

"
w0�s�

 �`0
s

T0�s�w0�s�Bn�s� ds

!
sin

jps
`0

#
dsÿ T 00�`0�Rn�`0�

�`0
0

w0�s� sin
jps
`0

dsÿ

�`0
0

�T0Bn � 0 sin
jps
`0

ds

sj �
�`0
0

w0�s� sin
jps
`0

ds

ânj � M̂ sin �npx� sin �jpx� �
�1
0

ŵ0�x�
 �1

B
R̂n�B� dB

!
sin �jpB� dB � 1

m`0
anj
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b̂nj�x� � B̂n�x� sin �jpx� � `0bnj

ĝnj �
�1
0

"
ŵ0�x�

 �1
B

dB
dx0

ŵ0�B�B̂n�B� ds

!
sin �jpB�

#

dzÿ
�

dz
dx0

� 0 �����
z�1

R̂n�z�
��
z�1

�1
0

ŵ0�z� sin jpz dzÿ
�1
0

�
dz

dx0
B̂n�z�

� 0
sin jpz dz � `0

H0
gnj

ŝj �
�1
0

ŵ0�B� sin jpB dB � sj

B̂n�x� � ŵ0Rn�x� � np cos �npx� � `0Bn

R̂n�B� �
�B
0

ŵ0 sin �npB� dB � Rn�s�

Appendix C. components of matrices and vectors and scalar coe�cients

Mjn � 1

2
djn � âjn

Njn � 2M̂b̂jn

K1jn � ĝjn ÿ M̂f̂B̂n sin �jpx�

K2jn � M̂B̂n sin �jpx�

K3jn � M̂B̂
0
n sin �jpx�

K1j � M̂ŵ0 sin �jpx�

hj � ŝjû
�

p � ÿm
�
ŵ0 �

ÿ
yTB 01

��
q � ÿ2m

ÿ
ÇyTBT1

�
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g � ÿ ĝ

�
dy0
dB
ÿ m

dx0

dB

������
B�x
ÿf̂

cT � 1T�Rÿ mS�

dT � ÿ
 
ĝ

dx0

dB

����
B�x

!
1TB

B � diag
�
B̂n

�
, n � 1, 2, 3, . . . , K

R � diag
�
R̂n

�
n � 1, 2, 3, . . . , K

S � diag
�
sin�npx��, n � 1, 2, 3, . . . , K

1 � �1, 1, . . . , 1�T, K� 1 unitmatrix

�1� � 11T
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